
The importance of electron interaction to the negative magnetoresistance of metallic n-GaAs

close to the metal - insulator transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 8657

(http://iopscience.iop.org/0953-8984/9/41/012)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 10:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/41
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 8657–8668. Printed in the UK PII: S0953-8984(97)83339-5

The importance of electron interaction to the negative
magnetoresistance of metallic n-GaAs close to the
metal–insulator transition

J M Monsterleet, B Capoen and G Biskupski
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Abstract. Magnetoconductivity measurements on n-GaAs, doped close to the metal–insulator
transition (MIT), are interpreted by a weak localization model including electron–electron
interaction corrections. Measurements are analysed in the temperature range 0.3–18 K and
for magnetic fields up to 1.5 T.

Analysis of the data shows that current theories elaborated for high values of the disorder
parameterkF l0 continue to be applicable in the immediate vicinity of the MIT over a wide range
of temperature and magnetic field. The inelastic scattering time is found to vary likeT −1.

Nevertheless, it has been necessary to study the relative magnitude of the different
contributions to electron interactions, which are shown to partially explain the surprising values
of the interaction constants.

1. Introduction

Negative magnetoresistance (NMR) has been widely observed in doped semiconductors
(Fritzsche and Lark-Horovitz 1955, Moritaet al 1984, Ootukaet al 1987) and is regarded
as a typical feature of the impurity band conduction near a mobility edge.

Recently, great progress has been made in the understanding of the NMR of disor-
dered systems with metallic conductivity: it is now clearly established that both the weak-
localization and the electron–electron interaction effects play important parts in the conduc-
tion process. Furthermore, the study of NMR remains the only way to measure the parame-
ters describing the various microscopic processes, such as inelastic or spin–orbit scattering.

Experimentally, Dyneset al (1983) and then Moritaet al (1984) were among the first
to analyse NMR in metallic materials using the weak-localization theory, but they met
with difficulties in fitting their data in the whole range of magnetic field without taking into
account the interaction effects. It is now well understood that these interactions contribute to
diminish the positive magnetoconductance. However, the relative magnitude of the different
theoretical expressions and the conditions of their application are the subject of conflicting
opinions. For instance, it has been shown recently that the Zeeman splitting interaction is
the dominant process in Si:P and Si:B (Bogdanovichet al 1995).

In a previous paper (Capoenet al 1993) we have presented results on n-GaAs where
data have been analysed using the model of Kawabata (1980). This model takes into account
the weak-localization process alone. The inelastic scattering timeτε of our sample has been
found to vary like the inverse of temperature, in accordance with the predictions of Isawa
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(1984). Nevertheless, we have shown that the magnetoconductance of Kawabata gave a
poor fit for moderate magnetic fields at low temperature (T 6 1.8 K). In order to resolve
the discrepancies which appear when only weak localization is considered at high magnetic
field and low temperature, we investigate in the present work the electron interaction effects
on the NMR.

The conductivity has been measured on a bulk sample of n-type GaAs, with an
electron concentrationn = 2.9× 1016 cm−3 close to the metal–insulator transition (MIT)
(kF l0 = 3.34 ≈ π ) and a compensation ratioK = 0.65. The experiments have been
performed down to 0.3 K and in magnetic fields up to 5.8 T, but our analysis does not
exceed 1.5 T in order to avoid the influence of the Shubnikov–de Haas effect and of the
normal positive magnetoresistance.

As the sample is very close to the MIT, the temperature behaviour of the conductivity
consists of aT 1/3 regime below 1 K and the diffusion constant has the following form:

D = 2.549× 10−4T 1/3+ 8.5× 10−5 m2 s−1. (1)

The elastic mean free pathl0 has been evaluated to be 351Å from the extrapolated
value ofσ(T = 0).

2. Quantum corrections to conductivity in disordered semiconductors: theoretical
background

The scope of this study is the weak localization occurring on the metallic side of the
MIT. A qualitative explanation for the weak localization was given by Bergmann (1983),
who considered the scattering of an electron along a closed loop following two opposite
directions. Since the electrons are wavelike, in the low-temperature limit (the mean free
path l0 must be shorter than the coherence lengthLϕ) the waves experience multiple
elastic scatterings by the impurities. Accumulating the same phase in both directions, they
interfere constructively, causing the localization effect. When a magnetic field is applied,
the interference is partially destroyed, bringing about a decrease in the resistance.

This NMR appears at temperature sufficiently low that the elastic scattering timeτ0 is
much less than the inelastic oneτε. In materials where spin–orbit coupling is absent,τε is
generally likened to the phase coherence lifetimeτϕ .

The magnetoconductivity (MC) of a tridimensional disordered material without spin–
orbit coupling has been expressed by Kawabata (1980) in this regime

1σ(B, T ) = e2

2π2h̄

√
eB

h̄
f3(δ) (2)

where

δ = h̄

4DeBτε
and

f3(δ) =
∞∑
N=0

[
2

(√
N + 1+ δ −√N + δ

)
− 1√

N + 1
2 + δ

]
.

The relation (2) is valid under the conditions

h̄

m∗vF τ0
� 1

eBτ0

m∗
� 1

√
eB

h̄
l0� 1 (3)

namelyB < 0.5 T in our case. Here,vF indicates the Fermi speed of electrons, equal to
h̄kF /m

∗, wherekF is the Fermi wave vector.
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Other quantum corrections to the conductivity arise from the enhancement of electron–
electron interactions by the magnetic field. These effects are generally treated like
perturbations within the scope of weak localization. Through a process similar to the weak
localization, the diffusive nature of the electron motion is responsible for the enhancement
of the electron–electron interactions.

These increases are classified into two different channels.

(i) The Cooper channel, also called the particle–particle channel, describes the
interaction between electrons of antiparallel momenta. This effect produces a positive
magnetoresistance through a dephasing process analogous to that discussed above.

(ii) The diffusion channel, or particle–hole channel, describes the interaction between
electrons of parallel momenta. There is no magnetoresistance arising from the orbital
interference in this channel. Nevertheless, the magnetic spin splitting leads to a positive
magnetoresistance (Lee and Ramakrishnan 1982).

3. Electron interaction: orbital contribution

Altshuler et al (1981) have suggested an expression of the MC due to the density of
states corrections caused by the Cooper channel interaction in the classically weak-field
region. This effect is presumed to occur at weaker field than the Zeeman effect (Lee
and Ramakrishnan 1982). In a one-valley semiconductor without spin–orbit coupling or
superconducting behaviour, it gives

1σA(B, T ) = −α e2

2π2h̄
g(B, T )

√
eB

h̄
ϕ3

(
2DeB

πkT

)
(4)

where α = 1 in the case of GaAs andg(B, T ) is the renormalized coupling constant,
expressed by Lee and Ramakrishnan (1982) as

g(B, T ) = λ̄

1+ λ̄ ln(EF /E0)
(5)

with λ̄ being the effective electron–electron interaction constant. According to Altshuler
et al (1981),E0 has the following form:

E0 = max(DeB; 1.764 kT ). (6)

The function inϕ3 is defined for long phase coherence times by

ϕ3(x) =
√
π

2x

∫ ∞
0

√
t

sinh2 t

(
1− xt

sinh(xt)

)
dt. (7)

Another form of the renormalized coupling constantg(B, T ) has been calculated by
McLean and Tsuzuki (1984) who give

g−1(B, T ) = ln

(
T0

T

)
+9

(
1

2

)
−9

(
1

2
+ DeB

2πkT

)
(8)

where9(x) is the digamma function.
According to Howson and Gallagher (1988), the temperatureT0 in (8) is the

superconducting transition temperatureTc in the case of superconducting materials, but
for a normal metal it is the Fermi temperatureTF = EF/k.

The orbital part of the positive magnetoresistance due to interactions has been added to
the weak-localization contribution (2) with the intention of describing the experimental MC
and extracting the inelastic scattering time at each temperature.
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At first, we used the original form of Altshuleret al (1981), namely, our data have been
analysed using equations (2), (4) and (5).

The result is obtained by a non-linear least-squares fit procedure whereτε and λ̄ are
the adjustable parameters and other constants are independently measurable. The chosen
algorithm, due to Marquardt (1963), increases considerably the speed and the preciseness
of the usual analytic least-squares fit method.

Subsequently, we have used a similar procedure with the coupling constantg(B, T )

given by McLean and Tsuzuki (equation (8)).
In equations (2) and (4), some functions have complicated analytic forms and cannot be

avoided because of their physical meaning. It is then advisable to replace them by spline
approximations. The functionsf3(δ), for example, is a sum of terms from zero to infinity
for which we substitute a polynomial proposed by Baxteret al (1989).

The functionϕ3(x), that consists of an integral from zero to infinity, will also be
represented by an Euler–MacLaurin series. A set of formulae for this function is given by
Oussetet al (1985) and corrected by Baxteret al (1989). The corresponding approximation
is written in the appendix with an accuracy of 2.5× 10−4.

The digamma functions that appear in equation (8) are also an infinite sum of terms
and have been calculated by Oossetet al (1985) with an accuracy of 7.3× 10−5 (See the
appendix).

All these approximations have been used in the numerical program each time the
functions or their derivatives were required. In order to reduce the number of fitting
parameters and to improve the stability of the convergence, the Fermi energyEF has been
evaluated as (¯h(3π2n)2/3)/2m∗ and the diffusion constant is given by equation (1).

A first set of τε values is provided by fitting the experimental MC to equations (2)
and (4), including the form (5) of the coupling constant. It is shown in figure 1(a) that
the agreement in the range of field 0< B < 1.5 T is acceptable forT > 3 K and
excellent at very low temperature. However, it should be pointed out here that the results
must be cautiously interpreted for several reasons. Indeed, the conditions of validity of
some approximations are not fully satisfied. For example, the weak-localization model
normally applies only ifB < 0.5 T in our case. Secondly, the additivity of the individual
contributions to the MC is to put into question in a system wherekF l0 lies nearπ . The lack
of a complete theory of weak localization close to the MIT leads us to assume the present
one correct. Moreover, theoretical considerations (Altshuler and Aronov 1985, Morgan
et al 1985) suggest that the interaction corrections may not be restricted to weak disorder
(kF l0� 1).

The obtained inelastic scattering timeτε is plotted against temperature in figure 2(a).
The values have been compared to the model of Isawa (1984), who predicts thatτε ∝ T −1

for T < 6 K.
The experimental behaviour ofτε is actually found to be linear inT −1, as well described

by

τε = 8.946× 10−12T −0.95. (9)

The electron–electron interaction constantλ̄ has a particular variation with the
temperature (see figure 3). It seems to stay in the neighbourhood of 2.1 in the high-
temperature limit. Then it diminishes withT and tends to its second valuēλ = 0.46.
Considering that the fits improve in proportion as the temperature decreases, the low-
temperature parameter must be the relevant one. Furthermore, whereas no significant
explanation has been provided for the high-temperature value, the low-temperature value
may be interpreted as equal toF/2 (Isawa and Fukuyama 1984), where the Hartree constant
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(a)

(b)

Figure 1. The variation of the magnetoconductivity with the field a and fit to the weak-
localization and orbital electron interaction contributions (a) using equations (4) and (5) with
α = 1 or equations (4) and (8) withα = 1

2 and (b) using equations (4) and (8) withα = 1.
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(a)

(b)

Figure 2. The variation of the inelastic scattering time with temperature. A comparison between
the weak localization model(•), the theoretical model of Isawa (——) and the model including
orbital interaction (�) (a) using equations (4) and (5) and (b) using equations (4) and (8).
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Figure 3. The variation of the interaction constant with temperature between its two stages in
the high- and low-temperature limits.

F has been calculated in the Kleinman–Langreth screening approximation (FKL = 0.9). The
parameterF indicates the average of the screened Coulomb potential over the momentaq

of the Fermi surface. This constant, contained between zero and unity, may have different
values from the one calculated using the Thomas–Fermi approximation (FTF ≈ 0.46). In
particular the Kleinman–Langreth approximation, which takes into account the correlation
effects (Kleinman 1967, Langreth 1969), gives

FKL = ln(1+ a)
a

a =
(
Ks

2kF

)2

. (10)

Ks is the screening parameter, determined by

Ks = kF
√(

1− 0.158

(
kT F

2kF

)2)(
1+ 0.158

(
kT F

2kF

)2)−1

. (11)

Knowing the Fermi vectorkF and the Thomas–Fermi parameterkT F , we calculate
Ks = 9.03× 107 m−1 andFKL ≈ 0.9.

Subsequently, we have tried to fit the data to the same terms (2) and (4), this time using
the renormalized coupling constantg(B, T ) given by equation (8), where the digamma
functions are replaced by a development recommended by Oussetet al (1985). In such a
case, the inelastic scattering timeτε remains the only fitting parameter and we expect to
retrieve the values obtained with the first method.

Figure 1(b) shows that poor fits are obtained from this analysis if we considerα = 1
in equation (4). Furthermore, the corresponding inelastic scattering time deviates strongly
from its theoretical dependence (figure 2(b)). Experimentally, it gives

τε = 3.3× 10−11T −1.22. (12)
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Although this result is not too far from aT −1 behaviour, the discrepancies between
these values, the model of Isawa at low temperature and the Kawabata experimental values
at high temperature let us assume that the form (5) ofg(B, T ) should be a better solution.

In fact, the previous dependence can be restored by puttingα = 1
2 in equation (4), in

which case relatively good fits may be performed again as in figure 1(a). Note that this
prefactor of one-half is also found when calculated as a fitting parameter. According to
Alschuleret al (1981), this coefficient, equal to unity in normal metals, may take the value
of one-quarter when strong spin–orbit coupling is present. Since we have never heard about
the presence of spin–orbit coupling in n-GaAs, we consider this resultα = 1

2 as inconsistent
with the observation of a strong NMR. However, since the model shows a good agreement
with experience, we will assume that this contradiction is due to a failure in the theory.

We now take into account the diffusion channel in the description of the MC and discuss
the relative importance of its contribution.

4. Electron interaction: Zeeman contribution

The splitting of the spin states by the magnetic field in the diffusion channel has been
considered by Lee and Ramakrishnan (1982). According to them, the Hartree interaction
between opposite spins is alone sensitive to the field. The exchange term implies a
correlation between electrons of identical spin and remains unchanged by the magnetic
field. The correction to the MC is then

1σLR(B, T ) = −e
2

h̄

F

4π2

√
kT

2Dh̄
g3(h) (13)

with h = gµBB/kT , g being the Land́e factor andµB the Bohr magneton. The function
g3 has the following analytic form:

g3(h) =
∫ ∞

0
d�

d2[�N(�)]

d2�
(
√
�+ h+

√
|�− h| − 2

√
�) (14)

whereN(�) = 1/(e� − 1).
The contribution1σLR has been used in addition to equation (2) and (4) in order to

describe the data up to 1.5 T. Hereg3(h) has been replaced by the spline approximation of
Oussetet al (1985) (see the appendix). The theoretical MC is then the sum of three terms
(2), (4) and (13):

1σ = 1σWL +1σA +1σLR (15)

also written

1σ = 4.8
√
B

[
f3(δ)− g(B, T )ϕ3(x)− F

2

√
kT

2DeB
g3(h)

]
(16)

with δ = h̄/4DeBτε, x = 2DeB/πkT andh = gµBB/kT .
We have tentatively fitted the experimental MC to this relation, firstly replacingg(B, T )

by the expression (5). The result is as correct as if we consider weak localization and
the Cooper channel only (figure 1(a)). From this analysis we could evaluate the three
adjustable parameters involved in equation (16). The values ofτε and λ̄ are the same
as previously found in section 3. However, the fitted values ofF are surprisingly very
important (F � 1) in the high-temperature limit and tend to zero at low temperature. This
result has no physical meaning sinceF must be in principle a constant less than unity for
a one-valley conduction band. Such a dispersion of theF values with the temperature may
originate from the number of fitting parameters. Indeed, we noticed that the fit depended
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(a)

(b)

Figure 4. The magnitudes of the weak-localization, the orbital interaction and the Zeeman
interaction contributions to the magnetoconductivity, calculated using fitted parameters and
F = 0.9 in equation (16). Plots against the magnetic field (a) at 17.7 K, (b) at 4.21 K,
(c) at 1.46 K and (d) at 0.32 K.

on the initial conditions, showing that evolution of the chi-square withτε, λ̄ andf presents
several valleys.

Another method to include the interaction effect due to the diffusion channel is to use
the form ofg(B, T ) given by equation (8) and to takeα = 1

2 in equation (4), as we have
already seen in section 3. This implies a two-parameter least-squares fit procedure, which
appears rather more stable. In this case, the behaviour of the fitted MC is almost the same
as in figure 1(a) and the experimental dependence of the inelastic scattering time is given by

τε = 8.18× 10−12T −0.87 (17)

which is very close to the behaviour obtained without the Zeeman contribution (figure 2(b)).
Nevertheless, the Hartree constantF is found to remain greater than unity in the high-
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(c)

(d)

Figure 4. (Continued)

temperature range and to tend towards zero when lowering the temperature. Thus the
Zeeman effect seems to be negligible in GaAs at low temperature.

At this stage of the description, we have to discuss the significance of the parameter
F , which normally should be a constant smaller than unity. In figure 4 are reported the
contributions to the MC of the three terms appearing in equation (16), at four different
temperatures. These terms are calculated using the fitted parameters, except forF , which
is taken to be equal to 0.9. It can be observed that, above 1.5 K, the diffusion term has
negligible influence on the total magnetoresistance. This might be related to the fact that
µBB < kT in the whole range of magnetic field forT > 1 K. As a result, the fits are
insensitive to the value ofF in the high-temperature range and the obtained values ofF

are generally strong in order to compensate the smallness of this term in the total MC.
At low temperature, in contrast, the Zeeman term is meanful (figure 4(d)) but the fit

to equations (16) and (8) leads toF = 0. Surprisingly, this value is contradictory to the
one calculated before in the Kleinman–Langreth approximation (F = 0.9). In fact, this
inconsistency can be cancelled if we include the attractive interaction via virtual phonons,
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as suggested by Howson and Gallagher (1988). In this case, the Hartree constantF must
be replaced with

F ∗ = F − 2λp (18)

whereλp is the electron–phonon coupling constant. The fitted value ofF would be in
reality F ∗ ≈ 0, suggesting thatλp ≈ F/2 in this sample.

5. Conclusion

In this paper, we have tested several models for the NMR in the weakly localized regime,
taking into account the electron–electron interaction enhancement. The corresponding
corrections include an orbital part and a term due to the Zeeman effect. We have shown that
the Cooper channel contribution alone is enough to describe properly the experimental MC
in this range of magentic field. In the low-temperature range, the parameters experimentally
found using the different methods have coherent values and the inelastic scattering rateτ−1

ε

seems to be linear withT . This persistent dependence has been explained by Belitz and
Wysokinski (1987) as a result of the Wegner scaling theory applied to the critical current
dynamics.

According to Hikamiet al (1980), the appearance of localized spins at the mobility edge
leads to the saturation in the temperature dependence ofτε. However, such a behaviour
has not been observed in our sample, even in the low-temperature limit. The impurity
concentration may not be close enough to its critical value for this phenomenon to occur.

Moreover, there still remains some doubt concerning the meaning of the spin–orbit
parameterα, introduced in the interaction term of Altshuleret al (1981). A comparative
study of the different contributions involved in the MC has made it apparent that the Cooper
channel is the dominant interaction effect in n-GaAs near the MIT. This result is opposed to
several experimental works on more metallic systems (see for example Sahnouneet al 1992,
Kyllesbech Larsenet al 1994). Furthermore, while it is well established that the Zeeman
effect has no influence on the MC above 1 K, its apparent significance at low temperature
seems neutralized by the smallness of its amplitude (F ∗ = 0).

Finally, it would be worthwhile to perform measurements at lower temperature (20 mK
for example) in order to check the stability of the presumed behaviours.
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Appendix

Euler–MacLaurin developments of several functions used in the least-squares fit procedures
are reported below.

(i) Kawabata’s functionfe(δ) with an accuracy better than 0.1%:

f3(δ) = 2(
√

2+ δ −
√
δ)−

[(
1

2
+ δ

)−1/2

+
(

3

2
+ δ

)−1/2]
+ 1

48
(2.03+ δ)−3/2.

(ii) Functionϕ3(x) of Alshuler et al with an accuracy of2.5× 10−4:
for x 6 0.7

ϕ3(x) = 0.329 25x3/2− 0.118 94x7/2+ 0.107 53x11/2− 0.0636x6.63
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for 0.76 x 6 2.4

ϕ3(x) = −0.030 43+ 0.226 16x + 0.141 04x2− 0.102 93x3+ 0.027 59x4− 0.0028x5

for x > 2.4

ϕ3(x) = 1.900 344− 2.293 92√
x
+ 1.2266

x2
− 0.826

x7/2
.

(iii) Functiong3(h) of Lee and Ramakrishnan with an accuracy of2.5× 10−4:
for h 6 3

g3(h) = 5.6464× 10−2h2− 1.4759× 10−3h4+ 4.2747× 10−5h6− 1.5351× 10−6h8

+6× 10−8h10

for 36 h 6 8

g3(h) = 0.645 48+ 0.235(h− 4)− 7.45× 10−4(h− 4)2− 2.94× 10−3(h− 4)3

+6.32× 10−4(h− 4)4− 5.22× 10−5(h− 4)5

for h > 8

g3(h) =
√
h− 1.2942− π2

12h3/2
− π4

16h7/2
− 5π6

32h11/2
.

(iv) Digamma functions in the expression of McLean and Tsuzuki, with an accuracy of
7.3× 10−5:

9

(
1

2

)
−9

(
1

2
+ x

)
= −4x

{
1

1+ 2x
+ 1

9+ 6x
+ 85+ 32x

150(5+ 2x)2

}
− ln

(
1+ 2x

5

)
.
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